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INTRODUCTION
In December 2019, a new respiratory virus was 

first identified in a human patient in China (CDC 
2020; WHO 2020). That virus was subsequently 
classified as SARS-CoV-2 or severe acute respiratory 
syndrome coronavirus 2 and is responsible for the 
disease now commonly referred to as COVID-19 
that became a global pandemic in 2020 (WHO 
2020).

A major concern with any virus is how fast it 
spreads, and in particular the growth rate of cases 
and deaths. Growth rates are especially important 
in the initial stages of a pandemic, when they are 
usually exponential (Diekmann et al. 2013; Chowell 
et al. 2016; Brauer et al. 2019; Hilton and Keeling 
2020). Because the transmission rate depends 
on the contact rate of the susceptible population 
with infected individuals, similar growth rates 
might be experienced in nearby geographical 
areas. Geographical regions might have region-
specific factors which affect the growth rate, such 
as population density, mobility of the population, 
access to healthcare, and a number of other factors 
(Selvitella and Foster 2020; Foster and Selvitella 
2021).
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Having an understanding of the spread of 
COVID-19 early in the pandemic is important for 
multiple reasons. A fast spread can put a strain on the 
healthcare system, especially hospitals which may 
be forced to work either at or beyond their capacity 
(as they were in the first months of the pandemic 
(Miller et al. 2020)). Shortages of medical and 
protective equipment, combined with government 
mandated shutdowns of the economy, can occur 
in such times of high healthcare burden (Miller 
et al. 2020; Selvitella and Foster 2020; Foster and 
Selvitella 2021). Having information on the spatial 
and temporal characteristics of the transmission of 
COVID-19 during the first stages of the pandemic 
was of assistance to policy makers (who strive for a 
more effective allocation of limited resources) and 
helped to predict the dynamics of early stages of 
subsequent waves or novel mutations. 

The interest of this study lies in understanding 
the spatio-temporal diffusion of COVID-19, 
specifically understanding the spread of COVID-19 
across counties in Ohio. A Besag-York-Molliè (BYM) 
model (Besag et al. 1991; Blangiardo and Cameletti 
2015) was developed from the cases and deaths 
in Ohio for the first 3 weeks following the initial 
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COVID-19 case in each county. The first county 
in which the virus was detected was Cuyahoga on 
9 March 2020; the last day considered in the study 
was 5 May 2020 (in Harrison County). 

This model provides insight to the following 
questions: First, to what extent does spatial 
correlation influence the growth of COVID-19 
cases and deaths in Ohio counties? Second, was 
the initial growth of cases in Ohio subexponential, 
exponential, or superexponential (Tolle 2003)? 
This second question is important for both 
epidemiologists and policymakers. Indeed, an 
important factor to determine when a pandemic 
begins is the initial growth rate, which in turn gives 
information to the most important epidemiological 
parameter, the basic reproduction number —the 
expected number of secondary cases caused by 
a single infected individual in a fully susceptible 
population (Diekmann et al. 2013; Brauer et al. 
2019). In the first weeks of pandemics, the main 
component of the growth curve of fatalities is 
generally of exponential type, but in some cases it 
has been shown to have a subexponential (Chowell et 
al. 2016) or superexponential (Tolle 2003) behavior. 

The paper is completed with: Appendix A 
providing relevant geographical information 
about Ohio, Appendix B illustrating the R-code 
developed, and Appendix C containing the 
estimates of the relevant parameters of the models 
developed (in particular those used for the Results 
and Discussion Section).  

METHODS
Dataset and Software

The dataset analyzed (CDC 2020) contained 
the number of cases and deaths associated with 
COVID-19 in the first 3 weeks of the pandemic, 
beginning with the first day COVID-19 appeared 
in each of the 88 counties in Ohio. Note that the 
first case did not appear on the same day in every 
county. For data analytic purposes, 3 supplemental 
spreadsheets titled "Supplemental Table  1," 
"Supplemental Table  2," and "Supplemental Table  3" 
are available at: http://hdl.handle.net/1811/92834 .

The statistical analysis utilized the R-INLA 
statistical package (Rue et al. 2009; R-INLA 
2020) available for R statistical software (R Core 
Team 2020). R-INLA is a package that performs 
approximate Bayesian inference for latent Gaussian 
models such as those considered in this manuscript. 

Spatio-Temporal Model  
Suppose yit represents the number of cases or 

deaths at a discrete time t with t = 1,…,T with 
T the time extension of this analysis. The index 
i = 1,…,n identifies the county in Ohio with n the 
total number of counties in Ohio. It is assumed 
that yit ∼ Poiss(λit), namely the case where the cases 
and deaths are distributed with a Poisson random 
variable with parameter λit is considered. Note that 
this assumption implies that the cases and deaths 
were equidispersed (McCullagh and Nelder 1989). 
The parameter λit is assumed to be the product 
λit = Ei ρit . While ρit represents the rate of appearance 
of new cases and deaths at time t in area (county) 
i, the expected number of cases or deaths in area i 
is defined as follows. Suppose the population under 
consideration is partitioned into J classes and rj is the 
standardized reference rate for class j = 1,…,J and Pij 

is the population count of class j in county i. Then 
the expected number of cases or deaths in area i is 
given by: 

                                             .

A link function ηit = log (ρit) is used to relate the 
cases or deaths to their spatio-temporal covariates 
in the following way:

The intercept b0 represents the average outcome 
rate in the entire study region (i.e., Ohio in this case); 
the covariate vi represents the area-specific effect and 
it is modeled as exchangeable, while to ui is given 
an autoregressive structure (Besag 1974; Blangiardo 
and Cameletti 2015). More specifically, suppose that 
N(i) represents the set of neighborhoods of area i, 
for i = 1,…,n and that u−i represents the area-specific 
effects excluding county i. Then, the conditional 
distribution ui | u−i is given by:

with

where µi represents the mean for area i, si
2 = σu

2 /Ni is 
the variance of area i, and Ni  = | N(i) | is the number 
of neighborhoods of area i. In this formulation, 
σu

2 represents the amount of variation between the 
spatially-structured random effects, and rik is the 
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indicator of spatial proximity between areas i and 
k which is defined as rik  = φWik with Wik  = aik /Ni and 
aik  = 1 if i and k are neighbors and 0 otherwise. The 
factor φ  > 0 is introduced to control the properness 
of the probability distribution and needs to ensure 
the positive definiteness of the variance-covariance 
matrix (I − φW  ) S 2, with I the n×n identity matrix, 
W = {Wik}n

i,k = 1 , and S 2= diag{s1
2,...,sn

2} (Cressie 1993). 
With these assumptions, the proper conditional 
autoregressive (CAR) specification u is a multivariate   
normal random variable, defined as follows:

with µ={µ1,…,µn} the mean vector. This structure 
implies that the correlation between areas i and 
j can be computed using the following formula 
(Blangiardo and Cameletti 2015):

It is further assumed that φ = 1 and 

                                              ,

a specification called intrinsic conditional 
autoregressive which together with the exchangeable 
random effect gives rise to the so-called Besag-York-
Molliè model (BYM) (Besag et al. 1991; Blangiardo 
and Cameletti 2015). By assuming that µi = 0 for 
every i = 1,…,n, then

(Refer to Besag et al. 1991; Best et al. 2005; Lee 
2011; and Lawson 2018 for further details.)

Concerning the temporal component Φit, a 
parametric trend is considered (as presented in 
Bernardinelli et al. 1995) which assumes

for t = 1,…,T and i = 1,…,n, but with p to be 
determined and not necessarily p = 1. Here, β 
represents the main trend, while δi represents the 
differential trends and the interaction between 
space and time components with the identifiability 
assumption 
                                                       .

Deviance Information Criterion  
The deviance information criterion (DIC) is a 

measure of model fitting typically used for Bayesian 
models (Spiegelhalter et al. 2002) which includes 
a trade-off between goodness of fit and model 
complexity.

Given a random variable Y, whose distribution 
depends on a set of parameters θ, the DIC is given 
by the following formula:

In this formula, pD represents the effective number 
of parameters, which is computed as

with

Here, D(θ) := −2log (p(y|θ)) represents the deviance 
and D the posterior expectation of the deviance. 
The DIC can be equivalently rewritten as

in which case it resembles the common expression 
of the Akaike information criterion (AIC), of which 
the DIC is a generalization (James et al. 2013).

Statistical Analysis  
The statistical analysis is divided into 2 parts. 

In both cases, homogeneity in the population is 
assumed, namely that Ei = 1 for every i = 1,…,n.

In the first part of the study, the cases and deaths 
were modeled using the linear ( p = 1) BYM and 
information about the spatial correlation and 
temporal differential effect emerging from the 
assumptions was extracted. It is worth noticing that, 
in these models, the time index is translated of a 
county-dependent factor ti , i = 1,…, n so that the 
analysis for each county starts the day in which the 
first case appeared in that county. This procedure 
was performed before modeling.

These results are visualized by plotting both the 
posterior mean of the spatial main effect ζi  = exp(ui + vi) 
and the differential effect δi for i = 1,…,n of the  cases 
and deaths models with linear growth rate p = 1. The 
thresholds which determine the classes (colors) in the 
plots are based on the 0, 0.25, 0.5, 0.75, 1- quantiles 
of the empirical distributions of the corresponding 
parameter for all Ohio counties.
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In the second part of the study, the best models 
were determined according to the DIC among 
the family of BYM with a generic nonlinear term 
p ∈ [0,2], with the search performed over steps of 
length 0.1. The search for an optimal model was 
performed independently and for both outcome 
variables (number of cases and number of deaths).

RESULTS AND DISCUSSION 
Spatial Main Effect and Temporal 
Differential Effect in the Linear Model

Fig. 1 and Fig. 2 represent the distribution of 
spatial and temporal effects, respectively, on the 
COVID-19 cases by county in Ohio for the linear 
model p = 1.

The spatial effect is given by the posterior mean of 
the spatial main effect ζi  = exp(ui + vi ) for i = 1,…, n. 
For the full output, see Appendix C. The counties 

with the darkest color (red) are the counties where 
the spatial effect ζi is stronger (Fig. 1). Especially 
in northeast Ohio and southwest Ohio, the model 
supports the presence of spatial correlation between 
counties.

The temporal effect is given by the differential 
effect δi for i = 1,…, n  and represents the extra 
growth rate of county i with respect to the Ohio 
growth rate. For the full output, see Appendix C. 
The counties with the darkest color (red) are the 
counties where the differential temporal effect δi is 
stronger (Fig. 2). Again, in northeast and southwest 
Ohio, the model mildly supports the presence of 
the temporal differential effect.

Fig. 3 and Fig. 4 represent the distribution of 
spatial and temporal effects, respectively, on the 
COVID-19 related deaths by county in Ohio for 
the linear model p = 1.

FIGURE 1. Posterior mean of the spatial main effect 
ζi  = exp(ui + vi ) for i = 1,…, n of the cases model with
 linear growth rate power p = 1

FIGURE 2. Temporal differential effects δi for i = 1,…, n 
of the cases model with linear growth rate power p = 1

FIGURE 3. Posterior mean of the spatial main effect 
ζi  = exp(ui + vi ) for i = 1,…, n of the deaths model with
 linear growth rate power p = 1

FIGURE 4. Temporal differential effects δi for i = 1,…, n 
of the deaths model with linear growth rate power p = 1
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In Fig. 3, the spatial effect is given by the posterior 
mean of the spatial main effect ζi = exp(ui + vi ) for 
i = 1,…, n. For the full output, see Appendix C. 
Also, the counties with the darkest color (red) are 
the counties where the spatial effect ζi is stronger. 
The spatial effect in this case is striking and shows 
a strong spatial correlation of the diffusion of 
COVID-19 in the first 3 weeks of the pandemic. 
Northeast Ohio, in particular, is the area where 
the posterior mean of the spatial main effect is 
the strongest, with gradual decrease in the radial 
direction from northeast to southwest.

In Fig. 4, the temporal effect is given by the 
differential effect δi for i = 1,…, n and represents 
the extra growth rate of county i with respect to 
the Ohio growth rate. For the full output, see 
Appendix C. The counties with the darkest color 
(red) are the counties where the differential temporal 
effect δi is stronger. Similar to the model for the 
cases, in northeast Ohio and southwest Ohio, the 
model mildly supports the presence of temporal 
differential effect. 

It is important to remember that the 21 days 
considered for each county are not temporally 
aligned, as the 21 days are considered from the 
day the first case of COVID-19 was reported 
in that county. This means that the temporal 
component due to the lag between the first case in 
one county and the first in another county, which 
is substantial, has already been taken into account 
in both models (number of both cases and deaths). 
This is in agreement with the milder effect of the 
temporal component in the models. Nevertheless, 
this analysis shows that even quotienting out the 
natural differential time-lag mentioned above, there 
is still some residual temporal effect distinguishable 
across counties.

Optimal Growth
This statistical analysis shows that the best model  

according to the DIC has sublinear growth both 
in the models where the outcome variables are the 
number of cases and those where the outcome 
variables are the number of deaths.

In particular, the model for the cases has optimal 
time growth when the exponent of the time 
nonlinearity is p = 0.3 (Table 1) . 

The model for the deaths has optimal time 
growth when the exponent of the time nonlinearity 
is p = 0.7 (Table 2).

Qualitatively, this indicates that the residual time 
component—once the differential time-lag of the 
appearance of the first case across counties had been 
accounted—had a sublinear growth. Understanding 
the exact growth rate of the number of cases and 
deaths has crucial implications for public health 
and can guide governmental policy decisions. Note 
that the analysis performed in this study includes 
a single family of models, so it cannot be used 
alone to guide a governmental decision on such 
an important issue.

Conclusions
This research studied the growth rate of the 

incidents (both cases and deaths) associated 
with COVID-19, in Ohio, during the 21 days 
after the first case appeared in each county. The 
evolution of the cases and deaths was modeled 
through a Besag-York-Molliè model with linear- 
and power-type time dependence. This model 
showed that the spatial effect on the deaths was 
substantial throughout Ohio, while the residual 
differential effect of the time component was mild, 
but present, in every county. In particular, the 
northeast counties in Ohio exhibited the strongest 
spatial effect, especially in the model of deaths 
related to COVID-19. Furthermore, this analysis 
showed that the growth rate of cases and deaths 
in Ohio were subexponential in the early stages of 
the pandemic—once the natural lag between the 
appearance of the first case per county was taken 
into consideration. 

As more data become available, future analysis 
will be dedicated to comparing the initial growth 
rate to the growth rate of cases and deaths at the 
beginning of subsequent waves of the pandemic 
and to determine the possibility of seasonal 
components. The initial growth rate of an epidemic 
relates to the basic reproduction number and so 
the former is of great importance to policy makers 
as it can influence governmental decisions and 
prompt mitigation strategies.
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Table 1
DIC values for increasing powers of p for the 

model of the cases  
p DIC

0 15183.75
0.1 11266.22
0.2 11186.54
0.3 11184.46
0.4 11211.81
0.5 11258.37
0.6 11319.57
0.7 11392.70
0.8 11475.93
0.9 11568.46
1.0 11670.49
1.1 11782.90
1.2 11907.54
1.3 12046.86
1.4 12204.18
1.5 12383.50
1.6 12589.55
1.7 12827.68
1.8 13103.30
1.9 13421.04
2.0 13783.03

Table 2
DIC values for increasing powers of p for the 

model of the deaths  
p DIC

0 6.681565e+48
0.1 1.748291e+03
0.2 1.745994e+03
0.3 1.745208e+03
0.4 1.744214e+03
0.5 1.743577e+03
0.6 1.743111e+03
0.7 1.743089e+03
0.8 1.743577e+03
0.9 1.744467e+03
1.0 1.746373e+03
1.1 1.749216e+03
1.2 1.755190e+03
1.3 1.775394e+03
1.4 1.095150e+84
1.5 1.897523e+69
1.6 5.012129e+63
1.7 4.404118e+61
1.8 1.392719e+61
1.9 7.181979e+60
2.0 2.166742e+60
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APPENDICES

Appendix A: Ohio Geography
Editor’s Note: The authors assert, and the reviewers acknowledge, that the discrepancy between county names in 

the map and the county names read internally to the R-code below did not affect the overall analysis. Specifically, 
the names in the map are correct, but the names of the columns in the R-code below include the county name 
“Unknown” and omit Wyandot County. This inconsistency is derived from the original Excel file downloaded from 
the CDC that is posted here ( http://hdl.handle.net/1811/92834 ) and whose column names were not modified 
during the analysis and kept as read by the command "Import Dataset" in the R-software.

For reference, a map of Ohio with the names of all 88 counties is provided. This can be used to identify 
the specific county from the plot reported in previous sections and specific parameters as reported in 
Appendix C below.

Below are the names of the counties in alphabetical order.

 unique(data$`county name`)
 [1] "Adams"      "Allen"      "Ashland"    "Ashtabula"  "Athens"     "Auglaize"  
 [7] "Belmont"    "Brown"      "Butler"     "Carroll"    "Champaign"  "Clark"     
[13] "Clermont"   "Clinton"    "Columbiana" "Coshocton"  "Crawford"   "Cuyahoga"  
[19] "Darke"      "Defiance"   "Delaware"   "Erie"       "Fairfield"  "Fayette"   
[25] "Franklin"   "Fulton"     "Gallia"     "Geauga"     "Greene"     "Guernsey"  
[31] "Hamilton"   "Hancock"    "Hardin"     "Harrison"   "Henry"      "Highland"  
[37] "Hocking"    "Holmes"     "Huron"      "Jackson"    "Jefferson"  "Knox"      
[43] "Lake"       "Lawrence"   "Licking"    "Logan"      "Lorain"     "Lucas"     
[49] "Madison"    "Mahoning"   "Marion"     "Medina"     "Meigs"      "Mercer"    
[55] "Miami"      "Monroe"     "Montgomery" "Morgan"     "Morrow"     "Muskingum" 
[61] "Noble"      "Ottawa"     "Paulding"   "Perry"      "Pickaway"   "Pike"      
[67] "Portage"    "Preble"     "Putnam"     "Richland"   "Ross"       "Sandusky"  
[73] "Scioto"     "Seneca"     "Shelby"     "Stark"      "Summit"     "Trumbull"  
[79] "Tuscarawas" "Union"      "Unknown"    "Van Wert"   "Vinton"     "Warren"    
[85] "Washington" "Wayne"      "Williams"   "Wood" 

Each index corresponds to the indexes in the codes and estimates in Appendix B and Appendix C below.

Names of all 88 counties in Ohio

http://hdl.handle.net/1811/92834
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Appendix B: R-Code
This appendix is devoted to the code used for the analysis, for reproducibility purposes.

This part of the code loads the packages and the dataset.
#Set Directory
remove(list=ls())
setwd("XX")
my.dir <- paste(getwd(),"/",sep="")

#Require Packages
require(INLA)
inla.setOption(scale.model.default=FALSE)
require(splancs)
require(sp)
require(fields)
require(lattice)
require(rgdal)
require(abind)

#Upload the Dataset
library(readxl)
CountyCovid_OhioOnly_ <- read_excel("XX/CountyCovid(OhioOnly)_days.xlsx")
data<-CountyCovid_OhioOnly_[1:15687,]

Here only the data from the first 21 days since the appearance of the first case in each county is selected.
index<-vector()
n=88
for (i in 1:n) {
  print(i)
  #data[which(data$county==i)[1:21],]
  index<-c(index,which(data$county==i)[1:21])
}

data21<-data[index,]

Ohio <- readOGR(paste(my.dir,"XX/tl_2010_39_county00.shp",sep=""))
county1 <- data21$county
Ohio.adj <- paste(my.dir,"XX/Ohio.graph",sep="")

This code constructs the Linear BYM model for the number of cases and produces Fig. 1 and Fig. 2.

formula.par <- cases ~ 1 + f(data21$county,model="bym",graph=Ohio.adj, constr=TRUE) 
+ f(county1,time,model="iid", constr=TRUE)+ time

model.par <- inla(formula.par,family="poisson",data=data21, 
                  control.predictor=list(compute=TRUE), 
                  control.compute=list(dic=TRUE,cpo=TRUE))
round(model.par$summary.fixed[,1:5],3)

'''
              mean    sd 0.025quant 0.5quant 0.975quant
(Intercept) -1.030 0.144     -1.316   -1.029     -0.750
I(time^1)    0.124 0.002      0.121    0.124      0.128
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'''

model.par$dic$dic
#11670.49

# Figure 1
m <- model.par$marginals.random[[1]][1:88]
zeta.ST1 <- unlist(lapply(m,function(x)inla.emarginal(exp,x)))

SMR.cutoff<-quantile(zeta.ST1,  probs = c(0,0.25,0.5,0.75,1))
SMR.cutoff
xi.factor <- cut(zeta.ST1,breaks=SMR.cutoff,include.lowest=TRUE)
m <- model.par$summary.random[[2]][1:88,2]
#int.cut <- c(-0.008,-0.001,0,0.001,0.006)
int.cut<-quantile(m,  probs = c(0,0.25,0.5,0.75,1))
int.factor <- cut(m,breaks=int.cut,include.lowest=TRUE)

data.ohio <- attr(Ohio, "data")
attr(Ohio, "data") <- data.frame(data.ohio, xi=xi.factor)
trellis.par.set(axis.line=list(col=NA))
spplot(obj=Ohio, zcol= "xi", col.regions=gray(3.5:0.5/4),main="")

#Figure 2
data.ohio2 <- attr(Ohio, "data")
attr(Ohio, "data") <- data.frame(data.ohio2, int=int.factor)
spplot(obj=Ohio, zcol= "int",col.regions=gray(3.5:0.5/4),main="")

This code constructs the Linear BYM model for the number of deaths and produces Fig. 3 and Fig. 4.
formula2.par <- deaths ~ 1 + f(data21$county,model="bym",graph=Ohio.adj, constr=TRUE)
+ f(county1,time,model="iid", constr=TRUE)+ time

model2.par <- inla(formula2.par,family="poisson",data=data21, 
                  control.predictor=list(compute=TRUE), 
                  control.compute=list(dic=TRUE,cpo=TRUE))
round(model2.par$summary.fixed[,1:5],3)

'''
              mean    sd 0.025quant 0.5quant 0.975quant
(Intercept) -4.550 0.210     -4.968   -4.547     -4.145
time         0.054 0.013      0.028    0.055      0.078
'''

model2.par$dic$dic
#1746.373

#Figure 3
m2 <- model2.par$marginals.random[[1]][1:88]
zeta.ST1_2 <- unlist(lapply(m2,function(x)inla.emarginal(exp,x)))
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SMR.cutoff_2<-quantile(zeta.ST1_2,  probs = c(0,0.25,0.5,0.75,1))
SMR.cutoff_2
xi.factor_2 <- cut(zeta.ST1_2,breaks=SMR.cutoff_2,include.lowest=TRUE)
xi.factor_2
m2 <- model2.par$summary.random[[2]][1:88,2]

int.cut_2<-quantile(m2,  probs = c(0,0.25,0.5,0.75,1))
int.cut_2
int.factor_2 <- cut(m2,breaks=int.cut_2,include.lowest=TRUE)
int.factor_2

data.ohio <- attr(Ohio, "data")
attr(Ohio, "data") <- data.frame(data.ohio, xi=xi.factor_2)
trellis.par.set(axis.line=list(col=NA))
spplot(obj=Ohio, zcol= "xi", col.regions=gray(3.5:0.5/4),main="")

# Figure 4
data.ohio2 <- attr(Ohio, "data")
attr(Ohio, "data") <- data.frame(data.ohio2, int=int.factor_2)
spplot(obj=Ohio, zcol= "int",col.regions=gray(3.5:0.5/4),main="")

This R-code outputs the DIC for the optimal growth rate for the model of the number of cases. 

DIC<-vector()

v=seq(0,2,0.1)
for (p in v){
   
formula.par <- cases ~ 1 + f(data21$county,model="bym",graph=Ohio.adj, constr=TRUE) 
+ f(county1,time,model="iid", constr=TRUE)+ I(time^p)

model.par <- inla(formula.par,family="poisson",data=data21, 
                  control.predictor=list(compute=TRUE), 
                  control.compute=list(dic=TRUE,cpo=TRUE))
round(model.par$summary.fixed[,1:5],3)
DIC<-c(DIC, model.par$dic$dic)
print(model.par$dic$dic)
}

#DIC vector
print(DIC)
'''
[1] 15183.60 11266.22 11186.54 11184.46 11211.81 11258.37 11319.57 11392.69 11475.93
[10] 11568.46 11670.49 11782.90 11907.54 12046.86 12204.18 12383.50 12589.55 12827.68
[19] 13103.30 13421.04 13783.03
'''
#Best DIC value
print(min(DIC))
'''
11184.46
'''
#Best DIC model
print(which.min(DIC))
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#4 p=0.3

###
#Best Model for Cases has p=0.3
###

p=0.3
formula.par <- cases ~ 1 + f(data21$county,model="bym",graph=Ohio.adj, constr=TRUE) 
+ f(county1,time,model="iid", constr=TRUE)+ I(time^p)

model.par <- inla(formula.par,family="poisson",data=data21, 
                  control.predictor=list(compute=TRUE), 
                  control.compute=list(dic=TRUE,cpo=TRUE))
round(model.par$summary.fixed[,1:5],3)

'''
              mean    sd 0.025quant 0.5quant 0.975quant
(Intercept) -8.762 0.237     -9.232   -8.760     -8.301
I(time^p)  4.105 0.057      3.994    4.105      4.216

This R-code outputs the DIC for the optimal growth rate for the model of the number of deaths. 

DIC_2<-vector()
v=seq(0,2,0.1)
for (p in v){
  
  formula2.par <- deaths ~ 1 + f(data21$county,model="bym",graph=Ohio.adj, constr=TRUE) 
  + f(county1,time,model="iid", constr=TRUE)+ I(time^p)
  
  model2.par <- inla(formula2.par,family="poisson",data=data21, 
                    control.predictor=list(compute=TRUE), 
                    control.compute=list(dic=TRUE,cpo=TRUE))
  round(model2.par$summary.fixed[,1:5],3)
  DIC_2<-c(DIC_2, model2.par$dic$dic)
  print(model2.par$dic$dic)
}

#DIC vector
print(DIC_2)
'''
[1] 6.681565e+48 1.748291e+03 1.745994e+03 1.745208e+03 1.744214e+03 1.743577e+03
 [7] 1.743111e+03 1.743089e+03 1.743577e+03 1.744467e+03 1.746373e+03 1.749216e+03
[13] 1.755190e+03 1.775394e+03 1.095150e+84 1.897523e+69 5.012129e+63 4.404118e+61
[19] 1.392719e+61 7.181979e+60 2.166742e+60
'''
#Best DIC value
print(min(DIC_2))
'''
 1743.089
'''
#Best DIC model
print(which.min(DIC_2))
#8 p=0.7
'''



OHIO JOURNAL OF SCIENCE 45A. M. SELVITELLA ET AL.      I      

'''

###
#Best Model for Deaths has p=0.7
###

p=0.7
formula2.par <- deaths ~ 1 + f(data21$county,model="bym",graph=Ohio.adj, constr=TRUE) 
+ f(county1,time,model="iid", constr=TRUE)+ I(time^p)

model2.par <- inla(formula2.par,family="poisson",data=data21, 
                  control.predictor=list(compute=TRUE), 
                  control.compute=list(dic=TRUE,cpo=TRUE))
round(model2.par$summary.fixed[,1:5],3)

'''
           mean    sd 0.025quant 0.5quant 0.975quant
(Intercept) -5.221 0.302     -5.820   -5.218     -4.633
I(time^p)    0.229 0.045      0.136    0.231      0.312

'''

Appendix C: Full Outputs 
This is the output of the code of the Linear BYM model for the number of cases. In particular, these are 

the estimates of the model parameters b0 and β in the case p = 1 and the value of the corresponding DIC.
'''
              mean    sd 0.025quant 0.5quant 0.975quant
(Intercept) -1.030 0.144     -1.316   -1.029     -0.750
I(time^1)    0.124 0.002      0.121    0.124      0.128
'''

model.par$dic$dic
#11670.49

These are the estimates of the posterior means of the spatial main effects ζi for i = 1,…,n.

zeta.ST1
 index.1     index.2     index.3     index.4     index.5     index.6     index.7 
 1.52291472  1.15583188  1.14840846  1.17135565  2.63916662  0.69335907  1.64888552 
    index.8     index.9    index.10    index.11    index.12    index.13    index.14 
 0.79928097  8.82974544  1.89896521  1.52203934  0.89634585  2.15965239  0.67689111 
   index.15    index.16    index.17    index.18    index.19    index.20    index.21 
 0.58980138  2.05710749  0.82884484 14.74848220  0.26663371  1.92479386  3.15618307 
   index.22    index.23    index.24    index.25    index.26    index.27    index.28 
 1.29510973  2.87710079  0.20754939  6.15472617  1.21689774  0.72094574  0.88253530 
   index.29    index.30    index.31    index.32    index.33    index.34    index.35 
 0.78654809  0.28515287  6.24271809  0.63224499  0.16963868  0.38541384  0.41793440 
   index.36    index.37    index.38    index.39    index.40    index.41    index.42 
 0.63235966  0.17614517  0.84153329  0.89137506  1.35372414  3.17126771  1.18042406 
   index.43    index.44    index.45    index.46    index.47    index.48    index.49 
 2.81869440  0.34226159  1.66147577  1.44112744  6.55112042  1.17165036  1.30716582 
   index.50    index.51    index.52    index.53    index.54    index.55    index.56 
 6.25853211  0.66681800  3.94698431  0.78141386  0.82790099  6.24264254  2.21892673 
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   index.57    index.58    index.59    index.60    index.61    index.62    index.63 
 1.46439827  0.82295745  0.44242395  0.98066729  0.65878224  0.70299420  0.79183798 
   index.64    index.65    index.66    index.67    index.68    index.69    index.70 
 1.24382218  0.58334702  1.16801973  3.28216210  0.48220495  0.01232118  0.73132563 
   index.71    index.72    index.73    index.74    index.75    index.76    index.77 
 0.40069469  0.90647997  1.00178060  1.01962772  1.46198862  2.27714820  4.95697180 
   index.78    index.79    index.80    index.81    index.82    index.83    index.84 
 0.72521309  0.64772456  1.15670576 54.92638427  1.47814277  0.54349093  3.14448274 
   index.85    index.86    index.87    index.88 
 0.16448801  1.32235705  0.14970093  1.70330616 

These are the estimates of the time differential effect δi for i = 1,…,n.

 m
 [1] -0.0736230841  0.0070411164 -0.0428609154  0.0043942070 -0.0806315580 -0.0061415887
 [7]  0.0024579641 -0.0344092627 -0.0125369768 -0.0341237599 -0.0453234795  0.0029827949
[13] -0.0020813590  0.0055735883  0.0714425221 -0.0271516181 -0.0035139379  0.1033839040
[19]  0.0944549740 -0.0325112268  0.0311765349 -0.0182355138  0.0090516368  0.0163063748
[25]  0.1009295310 -0.0397258546 -0.0278414943  0.0647899043  0.0172910386 -0.0059139225
[31]  0.0577191909  0.0183178075  0.0141448335 -0.0529573543 -0.0478536368 -0.0167793205
[37] -0.0132193427 -0.0552907730 -0.0058364386 -0.0719950595 -0.0337888070 -0.0244351223
[43]  0.0427817194  0.0235198609  0.0364418338 -0.0417927361  0.0359712511  0.1325914545
[49]  0.0001961628  0.0562784113  0.0403980205  0.0379351703 -0.0721675341 -0.0091257893
[55]  0.0115548638 -0.0928527169  0.0660688881 -0.0615967862 -0.0035593920 -0.0291333580
[61] -0.0566115600 -0.0117654571 -0.0479960002 -0.0435058422  0.0466197030 -0.0855581523
[67]  0.0268410734  0.0019266635  0.0775019857  0.0290847197  0.0140334173 -0.0191253316
[73] -0.0547981480 -0.0258499437 -0.0102877317  0.0603662508  0.0672975023  0.1146213580
[79]  0.0480804586 -0.0178295348 -0.0989958891 -0.0761436479 -0.0563006600  0.0045749866
[85]  0.0751317133  0.0130560906  0.0018759080  0.0159569297

This is the output of the code of the Linear BYM model for the number of deaths. In particular, these are 
the estimates of the model parameters b0 and β in the case p = 1 and the value of the corresponding DIC.

'''
              mean    sd 0.025quant 0.5quant 0.975quant
(Intercept) -4.550 0.210     -4.968   -4.547     -4.145
time         0.054 0.013      0.028    0.055      0.078
'''

model2.par$dic$dic
#1746.373

These are the estimates of the posterior means of the spatial main effects ζi for i = 1,…,n.

 index.1   index.2   index.3   index.4   index.5   index.6   index.7   index.8   index.9 
1.0035486 0.9968942 0.9989173 0.9998835 1.0060013 0.9980919 0.9991305 1.0053879 0.9990498 
 index.10  index.11  index.12  index.13  index.14  index.15  index.16  index.17  index.18 
0.9990749 0.9983781 0.9989874 1.0022046 1.0005633 1.0032919 1.0035163 1.0019193 1.0008599 
 index.19  index.20  index.21  index.22  index.23  index.24  index.25  index.26  index.27 
0.9967121 0.9990840 1.0035728 1.0098401 0.9989840 0.9989154 1.0040492 1.0010679 1.0074702 
 index.28  index.29  index.30  index.31  index.32  index.33  index.34  index.35  index.36 
0.9989606 0.9999518 0.9990761 0.9935888 0.9987185 0.9990972 0.9992246 0.9997577 1.0002665 
 index.37  index.38  index.39  index.40  index.41  index.42  index.43  index.44  index.45 
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0.9984995 1.0037205 1.0039863 0.9999408 1.0009392 1.0039843 1.0033154 0.9988733 0.9979998 
 index.46  index.47  index.48  index.49  index.50  index.51  index.52  index.53  index.54 
1.0029753 1.0028280 1.0087520 1.0025086 1.0034441 1.0030884 1.0032302 0.9999123 1.0007798 
 index.55  index.56  index.57  index.58  index.59  index.60  index.61  index.62  index.63 
1.0079712 1.0002209 0.9999938 1.0000692 1.0003810 0.9995006 1.0028350 1.0000269 1.0005631 
 index.64  index.65  index.66  index.67  index.68  index.69  index.70  index.71  index.72 
1.0004931 0.9988251 1.0012808 0.9976089 1.0023559 0.9986939 0.9992733 0.9998042 0.9984645 
 index.73  index.74  index.75  index.76  index.77  index.78  index.79  index.80  index.81 
1.0004424 1.0034499 0.9992026 1.0051884 0.9997734 1.0012931 0.9992502 0.9989074 1.0022338 
 index.82  index.83  index.84  index.85  index.86  index.87  index.88 
0.9994354 1.0033337 0.9999106 1.0018419 0.9976054 0.9987744 0.9974478 

These are the estimates of the time differential effect δi for i = 1,…,n.

[1] -0.0716048256  0.1059521402 -0.0606503830 -0.0630040940  0.0890923911  0.0658620728
[7] -0.0544374253  0.0767273593  0.0463886086 -0.0649060815  0.0480425316 -0.0606522325
[13]  0.0931658401  0.0133081552  0.1629430087 -0.0594382059 -0.0665706717  0.2476725114
[19]  0.1501242801 -0.0639894867  0.1149590144  0.1185976435  0.0115475733 -0.0671872548
[25]  0.2057952917 -0.0684423501  0.1110119226 -0.0578347769  0.0999185806 -0.0709316501
[31]  0.1721012297  0.0414307576 -0.0709321696 -0.0733793571 -0.0724231609 -0.0665301946
[37]  0.0317070978 -0.0699382551  0.1149431107 -0.0724265837 -0.0678658540  0.0922368384
[43]  0.1613308635 -0.0671871917  0.1237462020 -0.0658381008  0.1593889357  0.1992120282
[49]  0.1212705051  0.2203218984 -0.0630885366  0.1348163639 -0.0722314793  0.0830050724
[55]  0.2044096523 -0.0717925647  0.1334999585 -0.0720217435 -0.0706262001 -0.0678313440
[61] -0.0726573345 -0.0689415971 -0.0720313742 -0.0702644701 -0.0671848742 -0.0689710418
[67]  0.1668434873  0.0638022342  0.0589833647 -0.0618796404 -0.0698510467  0.0807199708
[73] -0.0720289214  0.0907502381 -0.0683986255  0.2129024512  0.2208535735  0.1890151488
[79] -0.0544410842 -0.0629789660  0.0007678136 -0.0689284827 -0.0741474516 -0.0630041718
[85]  0.0516243518  0.1133611344  0.0472618516  0.0985899912

-End of Code-


