Preliminary Understanding of Complexities in Swimming Performance of Common Minnow (Cyprinidae) Taxa

Crystal Nichols, Austin Smith, Stephen Huelsman, Cara Schemmel, Jason C. Doll, Stephen J. Jacquemin


Understanding swimming performance of native freshwater fishes has implications for ecology, conservation, and management. In particular, this type of information has practical importance for improving the understanding of fish dispersal, occurrence, migration, and invasive potential. The objective of this study was to characterize swimming performance of 2 taxa from the comparatively understudied minnow family (Cyprinidae) and test for potential drivers as a function of total length, sex, habitat, morphology, or some combination. The study assessed Spotfin Shiner (Cyprinella spiloptera; n = 66) and Bluntnose Minnow (Pimephales notatus; n = 24) populations from an ontogenic range of male and female individuals from lentic and lotic habitats in Indiana and Ohio. Akaike information criterion (AIC) model selection identified the most parsimonious linear regression model to predict swimming performance of Spotfin Shiner and Bluntnose Minnow independently. Overall, larger Spotfin Shiners were superior swimmers compared with smaller individuals. In both species, individuals having more streamlined heads and elongated caudal regions were better swimmers. Additionally, Spotfin Shiners that were collected from lotic environments were generally better swimmers than individuals from lentic environments. Models did not recover sex-specific effects in either species—or meaningful total length, or habitat effects, in Bluntnose Minnows. Overall, this study provides evidence of a complex series of swimming performance covariates when assessing or understanding performance. This has implications for aquatic population, assemblage, and community ecology as well as management and conservation efforts.


Swimming performance; flow regime alterations; swimming performance chamber; Cyprinidae ecology

Full Text:




  • There are currently no refbacks.

Copyright (c) 2018 Crystal Nichols, Austin Smith, Stephen Huelsman, Cara Schemmel, Jason C. Doll, Stephen J. Jacquemin

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.



Visit The Ohio Academy of Science's webpage

Visit our Knowledge Bank site for articles published from 1900 through 2013.

The Ohio Journal of Science is published by The Ohio State University Libraries in partnership with The Ohio Academy of Science.

If you encounter problems with the site or have comments to offer, including any access difficulty due to incompatibility with adaptive technology, please contact

ISSN: 2471-9390 (Online); 0030-0950 (Print)